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Analytical relationships are given for the temperature distribution and heat trans- 
fer in a compact layer moving in a cylindrical pipe when there are heat sources 
within the solid whose output varies linearly or exponentially along the length. 

A moving compact layer of material may have internal heat production or absorption, as 
in a chemical reactor, catalyst regenerator, dryer, or other such type of equipment [1-3] 
so there is considerable interest in heat transfer to the walls of pipes of various shapes. 
However, virtually all published studies [4-6] relate to immobile beds. Only in [7] do we 
find a study of heat transfer of a moving bed to walls in a slot for a uniform distribution 
of the internal heat sources. Here we consider the temperature distribution and heat trans- 
fer for a moving bed in a cylindrical pipe when the solid component contains internal heat 
sources whose output varies along the length. 

We use the model of [8]: a bed is considered as a heterogeneous two-component gas--solid 
system, while each of the components is considered as quasihomogeneous. The conclusions of 
[8] indicate that such a model reflects satisfactorily the features of heat transfer in such 
a bed and incorporates the major factors. In formulating and solving the problem we made the 
following assumptions: i) the components move in a direct-flow and rod-type fashion; 2) the 
physical characteristics of the components are constant; 3) the longitudinal heat transport 
due to thermal conduction is negligible by comparison with the convective transfer; 4) the 
structure and porosity of the bed do not vary across the cross section. The system of dif- 
ferential equations for the energies of the components and the heat transfer at the boundary 
takes the following form: 
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In the boundary conditions of the first kind in (4c) it has been assumed that the tempera- 
tures of the components at the boundary are equal to the surface temperature, i.e., the ther- 
mal resistance at the wall is negligible. The analysis of [9] indicates that this assumption 
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is approximately correct for unhindered motion of the bed, provided that the contact time 
is sufficient and the roughness is slight. Under these conditions, the analytical relation- 
ships derived from this model agree with experiment within the error of the latter. 

We consider two cases of variation in the output of capacity of the heat sources or 
sinks, namely, varying linearly and exponentially along the length: 

qvs = ~so( I + bx); (Sa)  

qw = qoso e~" (5b) 

The solution is derived as in [8] by double integral transform (Laplace transform with re- 
spect to the x coordinate and Hankel transform with respect to the r coordinate). 

If the output of the internal sources varies linearly, we get the following equations 
for the temperatures of the components and the local heat-transfer coefficient: 
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In (6)-(8) the summation is carried over all positive roots of the characteristic equation 
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If the variation is exponential, the temperature and heat-transfer rate distributions 
are described by 
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These equations allow one to perform a quantitative analysis of the effects of the major 
parameters on the heat transfer and temperature distribution: the velocities and physical 
parameters of the components, the geometrical characteristics of the pipe and particles, the 
output from the heat sources, and the mode of variation along the length. The formulas are 
applicable to various cases: heat production (qvs > 0) and heat absorption (qvs < 0) in the 
solid component, heat supply via the wall (~fo = tfo -- tws < 0) and heat removal via the wall 
(~fo > 0), as well as a fall in output along the length (b < 0, m < 0) and an increase in 
output in that direction (b > 0, m > 0). 

Calculations show that in (6)-(8) and (11)-(13) one can neglect terms containing exp~ 
(pzn x) by comparison with terms containing exp(plnx), since IPln[ << IP=nl; in the linear 
case, the terms containing exp(p~nx ) in (6)-(8) become negligible at a sufficient distance 
from the inlet, so the temperature distribution is determined mainly by the output from the 
heat sources and the law followed by the latter. The last factor is responsible for the 
variation in the heat-transfer coefficient along the flow. The absolute output from the 
sources has no effect on the heat transfer in this region. If the source output declines 
exponentially along the length, then (11)-(13) constitute convergent series. One need take 
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only the first term in each of these formulas at sufficiently large values of the longitudi- 
nal coordinate, and then the radial temperature distribution remains constant from point to 
point. The component temperatures and the heat-transfer coefficient are determined by the 
source output, as are the variations along the flow. 

If b = 0 and m = 0, (6)-(8) and (11)-(13) describe the temperature distribution and heat 
transfer for a moving bed with heat sources uniformly distributed inthe solid component. If 
qvs = const, the excess~temperatures of the components and the general mode of variation along 
the flow (decrease or increase) are determined by the source output. The heat-transfer co- 
efficient decreases along the channel, while any increase in the sourceoutput results in 
some acceleration of the heat transfer. At some distance from the inlet dependent on the 
working conditions and!geometrical characteristics, the solution becomes of self-modeling 
type in that the excess temperatures of the components and the heat-transfer coefficients 
cease to vary along the channel. The heat-transfer coefficient is independent of the source 
output in this region. These conclusions agree with results for slot channels [7]. 

If qvs = 0, (6)-(13) become the relationships of [8] for a moving layer without heat 
sources. 

These results can be used in calculations on the temperature distribution and heat trans- 
fer to the wall for cylindrical systems with dense beds that absorb or produce heat. 

NOTATION 

a, particle surface per unit volume; c, specific heat; d, particle size; qvs, capacity 
of internal heat sources; r, R, current radii; ro, channel radius; v, velocity; W, water 
equivalent; B, bulk concentration of solid component; X*, effective thermal conductivity of 
component in the bed; ~ = t -- tws; 0 = ~/$_ , excess temperature. Indices: g, gas component; 
f, flow; w, wall; s, solid component; 0, inlet cross section (x = 0). 
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